A Gradient Formula for Linear Chance Constraints Under Gaussian Distribution

نویسندگان

  • René Henrion
  • Andris Möller
چکیده

We provide an explicit gradient formula for linear chance constraints under a (possibly singular) multivariate Gaussian distribution. This formula allows one to reduce the calculus of gradients to the calculus of values of the same type of chance constraints (in smaller dimension and with different distribution parameters). This is an important aspect for the numerical solution of stochastic optimization problems because existing efficient codes for, e.g., calculating singular Gaussian distributions or regular Gaussian probabilities of polyhedra can be employed to calculate gradients at the same time. Moreover, the precision of gradients can be controlled by that of function values, which is a great advantage over using finite difference approximations. Finally, higher order derivatives are easily derived explicitly. The use of the obtained formula is illustrated for an example of a transportation network with stochastic demands.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gradient Formulae for Nonlinear Probabilistic Constraints with Gaussian and Gaussian-Like Distributions

Probabilistic constraints represent a major model of stochastic optimization. A possible approach for solving probabilistically constrained optimization problems consists in applying nonlinear programming methods. In order to do so, one has to provide sufficiently precise approximations for values and gradients of probability functions. For linear probabilistic constraints under Gaussian distri...

متن کامل

A Chance Constrained Integer Programming Model for Open Pit Long-Term Production Planning

The mine production planning defines a sequence of block extraction to obtain the highest NPV under a number of constraints. Mathematical programming has become a widespread approach to optimize production planning, for open pit mines since the 1960s. However, the previous and existing models are found to be limited in their ability to explicitly incorporate the ore grade uncertainty into the p...

متن کامل

Two-sided linear chance constraints and extensions

We examine the convexity and tractability of the two-sided linear chance constraint model under Gaussian uncertainty. We show that these constraints can be applied directly to model a larger class of nonlinear chance constraints as well as provide a reasonable approximation for a challenging class of quadratic chance constraints of direct interest for applications in power systems. With a view ...

متن کامل

Two-stage Optimization Approach to Robust Model Predictive Control with a Joint Chance Constraint

This report proposes a new two-stage optimization method for robust Model Predictive Control (RMPC) with Gaussian disturbance and state estimation error. Since the disturbance is unbounded, it is impossible to achieve zero probability of violating constraints. Our goal is to optimize the expected value of a objective function while limiting the probability of violating any constraints over the ...

متن کامل

Parameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation

 Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Oper. Res.

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2012